Alemdar, T., & Necat Oren, M. (2006). Determinants of technical efficiency of wheat farming in Southeastern Anatolia, Turkey: a nonparametric technical efficiency analysis. Journal of Applied sciences, 6(4), 827-830. Alvarez, A., & Arias, C. (2004). Technical efficiency and farm size: a conditional analysis. Agricultural Economics, 30(3), 241-250. Asmild, M., Hougaard, J. L., Kronborg, D., & Kvist, H. K. (2003). Measuring inefficiency via potential improvements. Journal of productivity analysis, 19, 59-76. Badunenko, O., & Mozharovskyi, P. (2016). Nonparametric frontier analysis using Stata. The Stata Journal, 16(3), 550-589. Bakucs, L. Z., Latruffe, L., Fertő, I., & Fogarasi, J. (2010). The impact of EU accession on farms’ technical efficiency in Hungary. Post-communist economies, 22(2), 165-175. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092. Baráth, L., Fertő, I., & Bojnec, Š. (2020). The effect of investment, LFA and agri-environmental subsidies on the components of total factor productivity: the case of Slovenian farms. Journal of Agricultural Economics, 71(3), 853-876. Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical economics, 20, 325-332. Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), 3758. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, Berlin. Bogetoft, P., & Hougaard, J. L. (2003). Rational inefficiencies. Journal of Productivity Analysis, 20(3), 243-271. Bojnec, Š., & Fertő, I. (2013). Farm income sources, farm size and farm technical efficiency in Slovenia. Post- Communist Economies, 25(3), 343-356. Bojnec, Š., & Fertő, I. (2019). Do CAP subsidies stabilise farm income in Hungary and Slovenia? Agricultural Economics, 65(3), pp. 103-111. Bojnec, Š., & Latruffe, L. (2009). Determinants of technical efficiency of Slovenian farms. Post-Communist Economies, 21(1), 117-124. Bojnec, Š., & Latruffe, L. (2013). Farm size, agricultural subsidies and farm performance in Slovenia. Land use policy, 32, 207-217. Bravo-Ureta, B. E., Solís, D., Moreira López, V. H., Maripani, J. F., Thiam, A., & Rivas, T. (2007). Technical efficiency in farming: a meta-regression analysis. Journal of productivity Analysis, 27, 57-72. Chebil, A., Frija, A., & Thabet, C. (2015). Economic efficiency measures and its determinants for irrigated wheat farms in Tunisia: a DEA approach. New Medit, 14(2), 32-38. Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big data in agriculture: A challenge for the future. Applied Economic Perspectives and Policy, 40(1), 79-96. Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. Springer science & business media. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. New York: Springer. De Castris, M., & Di Gennaro, D. (2017). What is below the CAP? Evaluating spatial patterns in agricultural subsidies. In: XXXVIII Annual Scientific Conference of the AIS Re. Italian Association of Regional Science, Cagliari, Italy. De Mauro, A. (2019). Big data analytics: guida per iniziare a classificare e interpretare dati con il machine learning. Apogeo, Milano. Dhungana, B. R., Nuthall, P. L., & Nartea, G. V. (2004). Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis. Australian Journal of Agricultural and Resource Economics, 48(2), 347-369. Fraser, I., & Cordina, D. (1999). An application of data envelopment analysis to irrigated dairy farms in Northern Victoria, Australia. Agricultural Systems, 59(3), 267-282. Galluzzo, N. (2013). Farm dimension and efficiency in Italian agriculture: a quantitative approach. American Journal of Rural Development, 1(2), 26-32. Galluzzo, N. (2018). Impact of the Common Agricultural Policy payments towards Romanian farms. Bulgarian Journal of Agricultural Science, 24(2), pp. 199-205. Galluzzo, N. (2019). A long-term analysis of the common agricultural policy financial subsidies towards Italian farms. Ukrainian journal of veterinary and agricultural sciences, 2(1), 12-17. Galluzzo, N. (2020). A technical efficiency analysis of financial subsidies allocated by the CAP in Romanian farms using stochastic frontier analysis. European Countryside, 12(4), 494-505. Galluzzo, N. (2021). A quantitative analysis on Romanian rural areas, agritourism and the impacts of European Union’s financial subsidies. Journal of Rural Studies, 82, 458-467. Garrone, M., Emmers, D., Lee, H., Olper, A., & Swinnen, J. (2019). Subsidies and agricultural productivity in the EU. Agricultural Economics, 50(6), 803-817. Gunes, E., & Guldal, H. T. (2019). Determination of economic efficiency of agricultural enterprises in Turkey: a DEA approach. New Medit, 18(4), 105-115. Guth, M., & Smędzik-Ambroży, K. (2020). Economic resources versus the efficiency of different types of agricultural production in regions of the European Union. Economic research-Ekonomska istraživanja, 33(1), 1036-1051. Guth, M., Smędzik-Ambroży, K., Czyżewski, B., & Stępień, S. (2020). The economic sustainability of farms under common agricultural policy in the European Union countries. Agriculture, 10(2), 34. Hansson, H., Manevska-Tasevska, G., Asmild, M. (2020). Rationalising inefficiency in agricultural production – the case of Swedish dairy agriculture. European Review of Agricultural Economics, 47(1), 1-24. Igwe, O. O., Nwaogu, D. C., & Onyegbule, F. (2017). Technical efficiency of poultry enterpreneurs in Abia state: a stochastic frontier approach. Scientific Papers: Management, Economic Engineering in Agriculture & Rural Development, 17(1). Kassambara, A. (2017). Practical guide to cluster analysis in R: Unsupervised machine learning (Vol. 1). Sthda. Kovács, K., & Emvalomatis, G. (2011). Dutch, Hungarian and German dairy farms technical efficiency comparison. APSTRACT: Applied Studies in Agribusiness and Commerce, 5(1033-2016-84134), 121-128. Kovács, K., Juračak, J., Očić, V., Burdiuzha, A., & Szűcs, I. (2022). Evaluation of technical efficiency of Hungarian and Croatian livestock sectors using DEA on FADN data. Journal of Central European Agriculture, 23(4), 909-920. Kumbhakar, S. C., Wang, H. J., Horncastle, A. P. (2015). A practitioner’s guide to stochastic frontier analysis using Stata. Cambridge University Press. Cambridge. Latruffe, L., Balcombe, K., Davidova, S., & Zawalinska, K. (2004). Determinants of technical efficiency of crop and livestock farms in Poland. Applied economics, 36(12), 1255-1263. Latruffe, L., Bravo-Ureta, B. E., Carpentier, A., Desjeux, Y., & Moreira, V. H. (2017). Subsidies and technical efficiency in agriculture: Evidence from European dairy farms. American Journal of agricultural economics, 99(3), 783-799. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. Manevska-Tasevska, G., Hansson, H., Asmild, M., & Surry, Y. (2021). Exploring the regional efficiency of the Swedish agricultural sector during the CAP reforms‒ multi-directional efficiency analysis approach. Land Use Policy, 100, 104897. Meshram, V., Patil, K., Meshram, V., Hanchate, D., & Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, 100010. Minviel, J. J., & Latruffe, L. (2017). Effect of public subsidies on farm technical efficiency: a meta-analysis of empirical results. Applied Economics, 49(2), 213-226. Nowak, A., Kijek, T., & Domańska, K. (2015). Technical efficiency and its determinants in the European Union. Agricultural Economics, 61(6), 275-283. Pallathadka, H., Mustafa, M., Sanchez, D. T., Sajja, G. S., Gour, S., & Naved, M. (2023). Impact of machine learning on management, healthcare and agriculture. Materials Today: Proceedings, 80, 2803-2806. Popescu, A., Dinu, T. A., & Stoian, E. (2019). Efficiency of the agricultural land use in the European Union. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 19(3), 475-486. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), pp. 210-229. Stetter, C., Mennig, P., & Sauer, J. (2022). Using machine learning to identify heterogeneous impacts of agri-environment schemes in the EU: a case study. European Review of Agricultural Economics, 49(4), 723-759. Storm, H., Baylis, K., & Heckelei, T. (2020). Machine learning in agricultural and applied economics. European Review of Agricultural Economics, 47(3), 849-892. Todorović, S., Papić, R., Ciaian, P., & Bogdanov, N. (2020). Technical efficiency of arable farms in Serbia: do subsidies matter? New Medit: Mediterranean Journal of Economics, Agriculture and Environment = Revue Méditerranéenne dʹEconomie Agriculture et Environment, 19(4). Yu, X., & Maruejols, L. (2023). Prediction, pattern recognition and machine learning in agricultural economics. China Agricultural Economic Review, 15(2), 375-378. Zhu, X., & Lansink, A. O. (2010). Impact of CAP subsidies on technical efficiency of crop farms in Germany, the Netherlands and Sweden. Journal of Agricultural Economics, 61(3), 545-564. |
|